LAVORO

Industria 4.0, le competenze del futuro

Industria 4.0 impone nuovi modelli di organizzazione del lavoro in team multidisciplinari, apprendimento project based, nuove competenze manageriali: non solo alfabetizzazione informatica, ma percorsi formativi completi

Pubblicato il 26 Apr 2017

Mauro Lombardi

Scienze per l’Economia e l’Impresa, Università di Firenze

industria_553128712

È sorprendente come nel nostro Paese Industria 4.0 sia una presenza costante in molte analisi e discorsi sul destino dell’apparato economico-produttivo, ma difficilmente si concentra l’attenzione sui processi formativi degli operatori, che saranno i protagonisti di questa traiettoria evolutiva delle economie nei prossimi anni. Non è arduo comprendere come sia ciò sia possibile, alla luce dei profondi mutamenti delle prestazioni di lavoro e delle culture operative a tutti i livelli, indotti dalla digitalizzazione sia dei processi e dei prodotti, di cui esisteranno gemelli digitali costantemente monitorati da remoto, sia del rapporto tra domanda e offerta di beni customizzati. Siamo entrati nell’era della variabilità, dove l’accelerazione della dinamica tecnologica e l’incessante dinamica della conoscenza in molti campi disciplinari impongono la necessità di elaborare strategie in condizioni di elevata complessità e incertezza. È quindi comprensibile che possa apparire un’attività non semplice e ad elevato contenuto di aleatorietà quella di prevedere profili e contenuti formativi per le fasce di popolazione investite dalle trasformazioni odierne e da quelle future, connesse alle prime e solo in parte prevedibili.

Ed è proprio a questo riguardo che occorre raccogliere le sfide generate dall’orizzonte in continuo cambiamento, sforzandosi di elaborare in modo sistematico informazioni sui trend evolutivi attraverso intensi tentativi di riflessione, che possono attualmente utilizzare strumenti e modelli computazionali molto più potenti rispetto a quelli del passato. È chiaro che il modo della formazione sarà un ambito cruciale per la creazione di competenze e professionalità appropriate allo scopo di affrontare le sfide che si profilano nel XXI secolo. Cerchiamo allora di delineare alcune implicazioni generali dei processi di ubiquitous computing sul terreno della dotazione di risorse umane che potrebbero essere necessarie. Il punto di partenza sono doverosamente le proprietà essenziali che lo scenario di Industria 4.0 mostra con crescente evidenza.

Processi e prodotti devono incorporare informazioni codificate e al tempo stesso interagire costantemente con tante variabili dell’ambiente operativo, scambiando flussi informativi con altri produttori e consumatori/utilizzatori. In questo modo sarà inevitabile competere nell’erogazione di servizi connessi al prodotto o addirittura sostitutivi del prodotto stesso, nel senso che quest’ultimo può non essere venduto, mentre si sviluppano transazioni sulle sue prestazioni e sul loro controllo sistematico nel corso di tutto il ciclo di vita. Ciò consente la cosiddetta manutenzione preventiva mediante la intelligent prognostics, perché il sistematico controllo computazionale di ogni input durante l’utilizzazione di un output può consentire di prevedere e anticipare possibili difetti, failures e qualsiasi tipo di inconveniente. Già dai sintetici elementi appena descritti, possiamo dedurre l’importanza di alcuni domini conoscitivi: modellazione computazionale, progettazione di algoritmi e sistemi di controllo, management di sistemi adattativi rispetto a mutevoli contesti di riferimento, skills operativi e manageriali nella gestione di micro e macro-sistemi fisico-cibernetici, attitudine a formulare e riflettere sui modelli di simulazione riferiti al consumo, all’evoluzione tecnologica, all’interazione tra prodotti e variabili ambientali.

Pensiamo a titolo di esempio al lavoro di un tecnico–operatore, che deve controllare una pala eolica, la componente di un motore a vari livelli, le funzionalità di un sistema-prodotto più o meno complesso. Nello scenario incentrato su Industria 4.0 il tecnico in questione monitora al computer il “gemello digitale” e, avendo riscontrato una potenziale o effettiva anomalia, va immediatamente ad ispezionare l’oggetto dotato di occhiali con “realtà aumentata”. Grazie a questi ultimi,  può arricchire l’universo di informazioni con cui mettere a fuoco l’anomalia e al tempo stesso interagire con il centro di progettazione interno all’impresa e con un centro di ricerca partner progettuale.

È chiaro, quindi, che una molteplicità di operatori – dal progettista al tecnico-manutentore, alle figure manageriali, agli addetti nei task delle variabili sequenze di funzioni economico-produttive – dovranno possedere la capacità di “riflettere e ragionare in termini di modelli” astratti e parametrizzati, di analizzare in modo puntuale e tempestivo variabili in continuo mutamento a seconda dei contesti di riferimento, evitando visioni parziali e segmentate per assumere invece una prospettiva di sistema dei processi e dei prodotti. Siamo di fronte al superamento della tradizionale concezione del prodotto “individuale” e all’adozione di una visione di esso come unità adattativa in un sistema di interconnessioni, perché inserita in un insieme di flussi informativi che cambiano senza sosta. Questo linguaggio, che può sembrare difficile e un po’ astruso, in sostanza significa che il prodotto non sarà più un qualcosa che, una volta ottenuto, avrà una propria vita indipendente rispetto alla sfera di produzione. Al contrario, esso, concepito come insieme di input organizzati per una serie di funzioni, evolve insieme alle stesse funzioni, grazie ad attività di trasformazione che hanno come leva l’intelligenza incorporata e l’intelligenza di ambiente (ambient intelligence), pervaso di sistemi fisico-cibernetici, cioè di dispositivi che elaborano informazioni in uno spazio interattivo tendenzialmente globale.

Da queste brevi note si evince chiaramente la necessità di un cambiamento profondo di mentalità a molti livelli: occorre pensare al tempo stesso in termini di micro e macro-sistemi (systems thinking) e quindi progressivamente accettare la sfida di organizzare il lavoro in team multi-disciplinari. Sarà infatti inevitabile, nell’ottica di virtualizzazione e operatività variabile di processi e prodotti, sviluppare combinazioni di differenti aree di conoscenza e tecniche pratiche in diversi campi disciplinari. Di qui discende la logica implicazione che la collaborazione interdisciplinare dovrà essere un ingrediente fondamentale e quindi sarà necessario andare oltre modelli operativi auto-referenziali, cioè improntati ad orizzonti essenzialmente chiusi, anche se in modo non esplicito. In altre parole, diviene essenziale l’attitudine a coniugare la quasi naturale spinta alla specializzazione con la propensione ad interagire e comunicare con altri modelli operativi. Gli skills comunicativi, come si dice in gergo, divengono una parte importante del bagaglio di competenze degli operatori in uno scenario di Fabbrica Intelligente. Occorre essere inoltre consapevoli del fatto che, dato il superamento dell’impresa come sistema compatto e integrato in un orizzonte economico-produttivo complesso e distribuito, è essenziale sviluppare funzioni e attività di coordinamento strategico a livello generale e nei vari sotto-sistemi che compongono il sistema complessivo a rete. Quest’ultimo dà infatti origine ad output variabili e a set di servizi funzionali connessi alle loro performances. In un quadro di tale natura, il perseguimento dell’efficienza e dell’efficacia nella produzione di beni e servizi richiede l’osservanza di nuovi imperativi:

  1. Adottare visioni incentrate su progetti trans-disciplinari.
  2. Favorire processi di apprendimento project-based, nel senso di un loro ancoramento all’evoluzione della conoscenza durante tutte le fasi, dall’ideazione all’esaurimento del ciclo di vita di un output, quando gli input iniziali devono diventare non materiali degradati, bensì innesco di nuovi cicli economico-produttivi (cosiddetto upcycling nella visione dell’”economia circolare”). In termini pratici, si pensi ai materiali preziosi e non recuperabili dall’enorme volume di computer obsoleti, modelli superati di telefoni e smartphone e in genere di gran parte dei beni di consumo con componenti elettroniche. L’esempio in questione è noto nella formula di “giacimenti urbani” (urban mines). Strategie di Industria 4.0 saranno sempre più intrinsecamente connesse a visione integrate e “circolari” dei flussi di materiali, energia e informazioni.
  3. Assegnare centralità alla consapevolezza che occorra collocare i processi economici all’interno di sistemi dinamici aperti.
  4. “Pensare per sistemi” comporta nuovi modelli e competenze manageriali, perché è doveroso acquisire schemi concettuali e strumenti operativi per progettare, realizzare e controllare processi e output in condizioni di incontrollabile variabilità e incertezza. A questo scopo è fortunatamente disponibile un potenziale enorme, mentre si sta realizzando un accrescimento esponenziale di tools e potenza computazionale a disposizione degli agenti individuali e collettivi. In definitiva, quindi, i limiti sono solo in noi stessi e nei processi formativi, dei quali si possono già intravedere linee generali di impostazione.

Bisogna innanzitutto sgombrare il campo da un potenziale equivoco: può essere fuorviante pensare genericamente in termini di alfabetizzazione informatica, unita ad una non ben definita collaborazione con il mondo delle imprese. Il motivo di questa affermazione è il seguente: le professionalità da formare devono possedere in primo luogo un background molto ampio di conoscenze di base, che coniughi solidità di fondamenti e apertura mentale. Nello scenario di Industria 4.0 è difatti essenziale combinare capabilities dinamiche, in grado di intercettare ed apprendere incessanti flussi informativi, riducendo al minimo i rischi di chiusura cognitiva (lock-in) e l’opposto, ovvero l’accettazione acritica del nuovo. Per favorire il raggiungimento di questo obiettivi generali, è necessario ipotizzare percorsi formativi funzionali fin dalla scuola superiore, in modo che siano combinati strumenti concettuali generali di tipo umanistico (filosofia, lingue e linguistica, storia economica) con conoscenze tecnico-scientifiche (fisica, chimica, biologia, informatica e introduzione alla modellazione, che serviranno in tutte le professioni). A livello universitario, poi, bisognerebbe differenziare i processi formativi in due tipologie: l’una di carattere più teorico e astratto, con finalità essenzialmente di ricerca pura e insegnamento; l’altra con obiettivi di natura operativa, in interazione dinamica con il mondo socio-economico. Ciò sarebbe immediatamente definito “corso professionalizzante” nella vulgata corrente, ma l’espressione sarebbe ingannevole: è preferibile impiegare una formula più pertinente del tipo “progettazione operativa”, ad indicare che si tratta di sviluppare competenze e professionalità sulla base dei principi generali precedentemente enunciati. Sia nel percorso teorico che in quello di progettazione operativa i contenuti possono essere affini, ma li differenzia un grado molto diverso di accentuazione dei temi di fondo trattati e delle strutture coinvolte: dinamica ed evoluzione dei sistemi complessi, modellazione computazionale, creazione di differenti strutture interattive, elaborazione di profili professionali ibridi nella progettazione operativa (competenze economico-ingegneristici, tecnico-manageriali).

Queste sintetiche riflessioni di carattere generali si basano su una visione per così dire “frattale” dei modelli formativi, perché questi ultimi possono essere ideati e realizzati su varia scala, seguendo la stessa logica di fondo. I limiti da superare sono in noi stessi e nelle culture prevalenti, non nel potenziale conoscitivo in continua evoluzione, grazie ad un’intensa accelerazione innovativa.

Valuta la qualità di questo articolo

La tua opinione è importante per noi!

EU Stories - La coesione innova l'Italia

Tutti
Analisi
Video
Iniziative
Social
Programmazione europ
Fondi Europei: la spinta dietro ai Tecnopoli dell’Emilia-Romagna. L’esempio del Tecnopolo di Modena
Interventi
Riccardo Monaco e le politiche di coesione per il Sud
Iniziative
Implementare correttamente i costi standard, l'esperienza AdG
Finanziamenti
Decarbonizzazione, 4,8 miliardi di euro per progetti cleantech
Formazione
Le politiche di Coesione UE, un corso gratuito online per professionisti e giornalisti
Interviste
L’ecosistema della ricerca e dell’innovazione dell’Emilia-Romagna
Interviste
La ricerca e l'innovazione in Campania: l'ecosistema digitale
Iniziative
Settimana europea delle regioni e città: un passo avanti verso la coesione
Iniziative
Al via il progetto COINS
Eventi
Un nuovo sguardo sulla politica di coesione dell'UE
Iniziative
EuroPCom 2024: innovazione e strategia nella comunicazione pubblica europea
Iniziative
Parte la campagna di comunicazione COINS
Interviste
Marco De Giorgi (PCM): “Come comunicare le politiche di coesione”
Analisi
La politica di coesione europea: motore della transizione digitale in Italia
Politiche UE
Il dibattito sul futuro della Politica di Coesione
Mobilità Sostenibile
L’impatto dei fondi di coesione sul territorio: un’esperienza di monitoraggio civico
Iniziative
Digital transformation, l’Emilia-Romagna rilancia sulle comunità tematiche
Politiche ue
Fondi Coesione 2021-27: la “capacitazione amministrativa” aiuta a spenderli bene
Finanziamenti
Da BEI e Banca Sella 200 milioni di euro per sostenere l’innovazione di PMI e Mid-cap italiane
Analisi
Politiche di coesione Ue, il bilancio: cosa ci dice la relazione 2024
Politiche UE
Innovazione locale con i fondi di coesione: progetti di successo in Italia
Programmazione europ
Fondi Europei: la spinta dietro ai Tecnopoli dell’Emilia-Romagna. L’esempio del Tecnopolo di Modena
Interventi
Riccardo Monaco e le politiche di coesione per il Sud
Iniziative
Implementare correttamente i costi standard, l'esperienza AdG
Finanziamenti
Decarbonizzazione, 4,8 miliardi di euro per progetti cleantech
Formazione
Le politiche di Coesione UE, un corso gratuito online per professionisti e giornalisti
Interviste
L’ecosistema della ricerca e dell’innovazione dell’Emilia-Romagna
Interviste
La ricerca e l'innovazione in Campania: l'ecosistema digitale
Iniziative
Settimana europea delle regioni e città: un passo avanti verso la coesione
Iniziative
Al via il progetto COINS
Eventi
Un nuovo sguardo sulla politica di coesione dell'UE
Iniziative
EuroPCom 2024: innovazione e strategia nella comunicazione pubblica europea
Iniziative
Parte la campagna di comunicazione COINS
Interviste
Marco De Giorgi (PCM): “Come comunicare le politiche di coesione”
Analisi
La politica di coesione europea: motore della transizione digitale in Italia
Politiche UE
Il dibattito sul futuro della Politica di Coesione
Mobilità Sostenibile
L’impatto dei fondi di coesione sul territorio: un’esperienza di monitoraggio civico
Iniziative
Digital transformation, l’Emilia-Romagna rilancia sulle comunità tematiche
Politiche ue
Fondi Coesione 2021-27: la “capacitazione amministrativa” aiuta a spenderli bene
Finanziamenti
Da BEI e Banca Sella 200 milioni di euro per sostenere l’innovazione di PMI e Mid-cap italiane
Analisi
Politiche di coesione Ue, il bilancio: cosa ci dice la relazione 2024
Politiche UE
Innovazione locale con i fondi di coesione: progetti di successo in Italia

Articoli correlati